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Abstract. The rate and manner of a monatomic gas relaxing to equilibrium in a confined 
enclosure is studied. We point out the nature of the eigenvalue spectrum associated with the 
linearized Boltzmann equation and the effect on this of the gas-surface scattering 
interaction. In particular, we note the existence of a long-lived sinusoidally-damped 
behaviour which depends on the viscosity and thermal conductivity of the gas, the 
gassurface interaction and the size of the container. General results are obtained using 
transport theory, and more explicit expressions in the hydrodynamic limit. 

1. Introduction 

The rate and manner of the relaxation to equilibrium of a spatially uniform gas have 
been studied by a number of authors, whose findings are summarized by Williams 
(1971). In general, it is found that, after an initially very rapid non-exponential decay, 
the distribution function approaches the Maxwellian form exponentially with a decay 
constant which is characterized by the force law between the constituent atoms. The 
nature of this decay has been studied in some detail for the Maxwell and hard-sphere 
models. 

In addition to the isotropic disturbance, the rates of relaxation of the angular 
harmonics have been examined and their characteristic decay times calculated. The 
more difficult problem of a spatially non-uniform disturbance has only recently been 
cursorily examined by KuSEer (1969). KuSEer has considered the gas to be confined in a 
convex container of volume V and temperature T. He notes that the rate of relaxation 
of the disturbed gas is now governed by the scattering law describing interactions of the 
gas atoms with the walls of the container as well as the interatomic scattering law. One 
interesting consequence of this fact is that the equilibrium solution of the Boltzmann 
equation is the Maxwellian function corresponding to a simple zero eigenvalue. In the 
case of the infinite medium mentioned earlier it can be shown that momentum and 
energy multiplied by the Maxwellian are also eigenfunctions corresponding to zero 
eigenvalues. 

KuSEer’s basic analysis depended on the isotropic scattering approximation which, 
in gas theory, is well known to lead to violation of momentum and energy in 
interparticle interactions and therefore to incorrect results regarding the decay rate of 
disturbances. Such an approximation was made earlier by Williams (1968a) when 
studying the propagation of sound waves in pipes. It is interesting to note that a similar 
behaviour regarding the absence of momentum and energy eigenfunctions was found in 
this case also and more will be said about the phenomenon below. 
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1298 M M R Williams 

The purpose of the present paper is to expand on KuSEer’s initial study, with 
particular regard to the limitations of the isotropic scattering approximation which we 
shall show, contrary to KuSEer’s assertions, can lead to new difficulties and introduce 
further interesting phenomena. Our general analysis will be based upon the Boltzmann 
transport equation but for ease of computation we also employ the associated 
hydrodynamic approximation. 

2. General theory 

The basic equation describing the decay of a gas to equilibrium following a disturbance 
is 

($+U +(U, r, t )  = JV, f) 

-U. nf(u, r,, t )  = I 

(1) 

where f(. . .) is the particle distribution function and J(. . .) the collision operator. 
If the gas is confined, it is subject to a boundary condition of the form 

du’ V I .  nP(u‘+ U ; rs)f(u’, r,, t )  (2) 
u‘.n>O 

where U. n < 0, n being a unit normal pointing out of the gas as the point rs on the 
surface of the container. P(u’+ U, rs) is the wall-particle scattering kernel as discussed 
by KuSkr (1971). 

We are interested only in small deviations from equilibrium and therefore write 

f(0, r, t > = f d u ) ( l + h ( u ,  r, t)> (3 )  
where 

is the equilibrium distribution and h is the perturbation whose behaviour is of interest. 

linear transport equation for h(u, r, t): 
Insertion of (3) into (1) and neglect of second-order terms leads to the following 

(5 )  
-mv’Z/2kT (i + U. V + V ( U ) )  h(u, r, t) = \ du’ K(u’ + U )  e N u ’ ,  r, t> 

and for the boundary condition 

-mv‘2/2kT -U nh ( U ,  r,, t )  = do’ 0 ‘ .  nP(u’+ U; r,) e h h ’ ,  r,, t ) .  
v ’ . n > O  

We shall be interested in the existence of solutions of equation 
boundary condition (6) ,  in the form 

h(u, r, t )  - hA (U, r )  e+‘. 
The equation for hA is therefore 

(6)  

( 5 )  subject to the 

(7) 

( V( U )  - A + U . V) hA (U, r ) = J du ’ K ( U’ + U) e-.mv’2/2kT h ( U r ,  r )  (8) 

with the boundary condition as for h(. . .) in equation (6). 



Time relaxation of a gas 1299 

We therefore have an eigenvalue problem for A. KuSEer has made the point that the 
line Re(A) = i, where x = ( V ( U ) ) ~ ~ ” ,  is a natural dividing line for studying eigenvalues. 
Re(A) > 2 is generally associated with singular solutions representing the rapid initial 
transients whilst Re(A) < i is expected to contain isolated discrete eigenvalues 

The sequence of discrete eigenvalues will in general be very much more complicated 
than in the case of the infinite medium. This is because we must examine spatial modes 
as well as energy and angular ones. In the present work we confine ourselves to the case 
of the fundamental spatial mode and to the rate and manner at which this decays. 

Ao, A i , .  . . AN. 

3. Elementary spatial solutions 

KuSEer has attacked the problem by using the isotropic scattering approximation for 
K(u’ + U), i.e. 

and has converted (8) into an integral equation for the angular integrated disturbance 

At this stage, however, we wish to avoid the approximation implied by (9) and so 
look for further elementary solutions in the form 

(11) 
hA(u, r)-hA(&*B)e k1B.r  

where B is an arbitrary vector to be defined below. 
With (1 l), equation (8) can be written 

-mu‘2/2kT - ( V( U )  - A f iu . B)GA (U, f B )  = do’ K( U’ + U) e hA ( 0 ‘ 9  f B) .  J 
Now, choosing the direction of B such that U. B = uB cos 6 = uBp, we can rewrite 

(12) in the form 

(V(U)-h  *iVBp)h;(U, p, * B )  

where 
21+1 

K(u’+ U )  = 1 - &(U’+ V)P/(6’. 6) 
I = O  4?r 
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Dividing (13) by (V(v ) -A  *iuBp), multiplying by P,(p) and integrating over 
p(-1,  l ) ,  leads to the following set of coupled integral equations for the angular 
moments hl(. . .): 

Xh,(v', A, *B). (17) 

We thus have an eigenvalue problem for A as a function of the parameter B. Whilst 
a solution of these equations is feasible, either by numerical methods or pertubation 
theory, we can avoid a great deal of labour by simply noting that equation (12)  is nothing 
more than the sound wave dispersion law equation with -iA = U, the frequency, and 
B = K ,  the wavenumber. For small values of w it is known (Wang Chang and 
Uhlenbeck 1952) that o and K are related by the formula 

where Vo is the normal velocity of sound (5kT/3m)"2, p is the gas density, pv is the 
viscosity and AT the thermal conductivity. U and b are constants which are functions of 
p, and AT. 

In addition there is another root 

K = ( = )  2piw 1/2 +... 

which corresponds to a diffusive rather than a propagating mode. We shall, however, 
not consider this further complication. 

Associating A with io and B with K and inverting the series we find that 

A =*iBVo+-(-AT+--p,)B2+. 1 2m 2 . . =*iBV,-,+qB2+.. . 
p 15k (19) 

In terms of the elementary solutions, therefore, we can write the form of decay of 
h(u, r, t) in a system for which h varies only in the x direction as 

h(u,x ,  t ) - ~ e - " ' ( t ; , ( ~ , B ) e ' ~ ~ + ~ ~ ( u ,  - ~ ) e - ' ~ " )  

+ie"*"(h;*(v, B )  e-iBx +L:(t., -B)  eiBx) 

or with h; (U, B) = &,(U, B) +iAl(u, B) and A = Q +iP, in the more suggestive form 

h(o, x, t) -e-a'[Ao(u, B) cos(Bx -@)+&,(U, -B) cos(& +Pt )  

-Al(u, B) sin(Bx-/3t)+Al(u,-B) sin(Bx+Pt)]. (20h) 
We note therefore that the gas relaxes to equilibrium in the form of damped 

travelling waves. The decay constant qB2 depends upon the values of the viscosity, 
thermal conductivity and gas density and also on B. Similarly the frequency p of the 
damped oscillation is equal to V,$. It remains, therefore, to discuss the nature of B. 
Before doing so, however, let us consider KuSEer's approximation of isotropic scatter- 
ing. In that case the value of A is given by 

A =D,$'+. . . (21) 
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where Do is the Maxwellian average of the solution of a certain integral equation. For 
Maxwell molecules Do is equal to 3pv/2p which corresponds to the diffusive mode 
mentioned earlier. 

It may be seen from this approximation that the complete character of the decay has 
been changed since, owing to the absence of the complex terms in A, the decay is simply 
exponential. Clearly, therefore, a realistic description of the smttering kernel K(u' + U) 
is required. 

4. The parameter B 

We have not yet specified B, and in order to do this it is necessary to introduce the 
boundary conditions of the problem. To anticipate the result, we shall note that, for a 
gas confined by parallel plates at x = - d / 2  and n = d / 2  with a combination of diffuse 
and specular boundary conditions, the smallest value of B is given by B =  
r / ( d  +2x0(B)). For small values of B, the quantity xo(B) is independent of B, thus B 
can be viewed as a measure of the system size. The analogy with neutron transport 
theory is self-evident, where B 2  is referred to as the buckling of the system. 

We see, then, from equation (20) that for large systems the rate of decay to 
equilibrium is small and the frequency of oscillations also small. For example in 
hydrogen gas at 300K and a pressure of 76 cm Hg confined between plates 10 cm apart, 
we find that Vo= 105cms-' and hence BVo~O*3x105s-' .  Using the fact that 
A T =  15kpv/4m we get for hard spheres 

7 = if x io5 cm2 s-l 

where If is the mean free path of hydrogen atoms. According to Newman and Searle 
(1950) I t  at NTP is about cm, thus 7) is of order unity. The decay constant vB2  is 
then roughly 0.1 s-l which corresponds to a relaxation time T(= 1/7B2) of 10 s. This is 
a remarkably long time and indicates that in relaxing to equilibrium the disturbance 
travels back and forth between the boundaries many thousands of times before finally 
settling down. This is in contrast to neutron decay in a moderator which relaxes to 
equilibrium in milliseconds. 

We have only mentioned superficially the significance of B and have not indicated 
how it should be obtained from the transport equation. The complete calculation is 
beyond the scope of the present paper; however, a few words are in order. Basically, the 
method is similar to that used in neutron transport calculations and can be tackled in 
one of two distinct ways. In the first, the transport equation is treated in its full 
generality with no approximations being made to the kernel or the boundary condi- 
tions. The solution is written in the form 

( 2 2 )  hA (U, x )  = A A  (U, B )  eiBx +&(U, -B)  e+" +pT(u, x )  

where PT(U, x )  is a so called spatially transient term which is expected to be small at a 
distance of several mean free paths from the boundaries. The other two terms on the 
right-hand side are referred to as asymptotics and are expected to dominate the solution 
over the main volume of the enclosure. A variational principle is formed by converting 
the integro-diff erential transport equation to integral form including the boundary 
conditions, and the extremum of the associated functional can be shown to be related to 
B. This result then links B to the size of the system and its physical properties. 
Examples of this technique can be found in Williams (1968a) and Kladnik (1965). The 
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result is, as predicted, of the form B = m/(d  +2x0(B)) for a parallel-plate system. 
However, in contrast to the neutron case, xo(B) can depend quite strongly on the 
wall-particle boundary condition and for purely specular reflection will become infinite. 
xo(B) is also in general a complex quantity. 

The other method for obtaining B is to attempt an analytic solution of the transport 
equation. This, however, is only successful if very simple models of scattering are 
employed when such methods as the Wiener-Hopf technique (Placzek and Seidell947) 
can be employed. We shall discuss these matters at length in another publication. 

The questions that are generally asked regarding relaxation problems concern the 
existence of discrete decay constants A,. We note from our perturbation analysis for 
small B that increasing B moves the real part of the eigenvalues A and A * nearer to the 
line Re(A) = h: What is not clear is the behaviour of A for very large B or, what is the 
same thing, systems of the order of a mean free path in size. Figure 1 shows 
schematically the behaviour of A as a function of B as available from perturbation 
theory. The broken curve shows a possible behaviour for larger B but it remains to be 
shown that for sufficiently small systems a discrete decay constant disappears 
altogether. KuSEer surmises that this will be the case but only on the basis of the 
isotropic model; however, the fact that the eigenvalues are complex render many of the 
techniques developed in neutron transport theory inapplicable and this question still 
remains to be answered. 

Figure 1. The full curve denotes the path traced out by A as IBI increases. The broken curve 
is a supposition based upon the general properties of the transport equation. 

5. Solution from hydrodynamics 

Whilst we have been able to draw a number of interesting conclusions from our 
examination of the transport equation, it was not found possible to obtain an explicit 
expression for the space- and time-dependent decay of the density, velocity and 
temperature perturbation following a disturbance. In this section, therefore, we 
assume that conditions are such that we may use the linearized hydrodynamic approxi- 
mation to the transport equation. An attempt to include specifically transport effects is 
made by using slip boundary conditions for the velocity and temperature at the 
container walls. 

To simplify the calculations we consider parallel-plate geometry with a diffuse- 
specular boundary condition at the wall. For such a boundary condition the slip 
coefficients have been calculated by Loyalka (1971). For small perturbations the 
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hydrodynamic equations can be written 

asp  asu 
-+po--=o 
at ax 

3k a6T a26T asu 
2 m  at ax ax 
-po--AT-- - 

2 - Po- 

where 6p, Su and ST are perturbations from the equilibrium values of density pa, 
velocity uo and temperature To. The boundary conditions are 

S T ( T $ ~ ,  t )  = * (eST(r$f, t )  

Su(r$d, t )  = *&u(T$f, t )  

9 and t being the temperature and velocity slip coefficients respectively. 
Equations (23)-(27) are Laplace transformed in time subject to the initial conditions 

Eliminating G(x, p ) ,  the Laplace transformed velocity perturbation, leads to the 
following coupled equations for p(x ,  p )  and T(x, p ) :  

A=P - ~ p ~ p i ;  + PR ~~p = - $ R T,S, (3  1) 

The general solutions of these two equations are readily found to be 

(33)  

(34) 

TOSO T(x,  p )  = A0 cosh S I X  +A2 cosh S ~ X  +- 
POP 

SO P(x ,  p )  =A3 cosh six +A4 cosh S ~ X  +- 
P 

where 

and s: and si are the roots of 
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Similarly, the velocity perturbation is given by 

(qRp,p -AT&) sinh s2x. (38) A2 
POS2R7-0 

($Rpop -hTs:) sinh slx - A0 

PoslR To 
n(x ,  p )  = - 

The remaining unknowns A. and A2 are obtained by using boundary conditions 
(26) and (27), whence we can write complete expressions for T(x, p) ,  p(x, p )  and n ( x ,  p ) .  
The expressions are rather lengthy and we shall therefore consider only p(x, p )  which 
takes the form: 

where 

A(p)=($Rpop-ATs:) 

The inversion of T(x, p )  leads to 6T(x, t ) ,  namely 

J eP'T(x, p )  dp. (44) 
1 

6T(x, t )  = - 
27ri 

It is readily shown that the apparent pole at p = 0 has zero residue so that the 
singularities of the integrand are determined by the zeros of A(p). This function has in 
general an infinite number of complex conjugate roots pn = -& * ian, so that ST(x, t )  
takes the form 

+complex conjugate. (45) 

If this general form is correct, and hydrodynamic approximations are usually 
accurate indicators of asymptotic behaviour (i.e. n = 0 term), it suggests the transport 
theory asymptotic solution given by (20a) has associated with it an additional spatial 
term with a different value of B, possibly related to the diffusive mode. 

We also note from the relation between p and s2, i.e. equation (37), that the two 
roots s1 and s2 can, for small p ,  be written 
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and 

or 

and 
3Pv 2 

2Po 
p = -s2. 

(47) 

(49) 

Since the values of p have negative rea. parts we can set s1 = iB and s2 = it thereby 
leading to 

pz--( 3Pv 2 

2Po 
which are equivalent to the first two terms of the perturbation theory approximation of 
the full transport equation. It is not to be inferred that B and 6 are necessarily real; 
however, they will certainly have small imaginary parts. 

The actual computation of the pn depends upon a thorough study of the roots of 
A(p) = 0. This may be best achieved by writing it in the form 

)( )- (52) 
3 2 ~Rpop  -ATSI - 1 +sl% tanh(sld/2) s;’ tanh(szd/2) +[ 
SRpop - A ~ s 2  s1 tanh(sld/2)+l 1 +s2% tanh(s2d/2) 

The special case of 9 = f = CO leads to @JA and Q2/A both tending to zero and 
thereby predicts 6T(x, t )  to be independent of space as expected. On the other hand, 
9 = l = 0 corresponds to no slip at the walls and (52) becomes the classical expression 
(Rayleigh 1896). 

For convenience in numerical work, we define the dimensionless parameters: 

2 - (  - 

Po = POP/ vi, 
l o =  VOl/PO, g o =  Vo%/po, 

SPO -- - so1 r 1 + so1 g o  tanh(~o1~0/2)I[l0 + si; tanh(sozdo/2)1 
~ p ~ - s &  - [l +so290 tanh(so2do/2)1[[0+so;’ tanh(s01d0/2)1 

so = Pod vo, do = d VOIPO 

where po = pV/po and RTo = 3Vi /5 .  Now (52) becomes 
2 2 

2 (53) 

where PO and so are related by the equation, 

(54) (1 ++!po)s;-$po(l +ypo)sO+5po-- 2 2 3 -  0. 
No detailed numerical results are yet available for p,,. We can, however, note that 

they occur in complex conjugate pairs and are infinite in number. Moreover, they will 
depend on the nature of the gas through the viscosity pv and also on the boundary 
conditions through Lo and 30. It is clear, however, that the hydrodynamic method does 
not predict any limit-point behaviour and will therefore only be valid for long times and 
slowly varying spatial conditions: this of course is not unexpected since such conditions 
are built into the hydrodynamic approximations. 
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6. The effects of the boundaries on the zero eigenvalues 

As we mentioned earlier, the presence of boundaries reduces the fivefold degenerate 
zero eigenvalue, A = 0, to a single one corresponding to the Maxwellian eigenfunction. 
It is of some interest, however, to examine the way in which the boundary removes the 
degeneracy. To this end we construct the integral transport equation for this problem 
directly from the integro-differential form and thereby include implicitly the boundary 
conditions. 

Changing equation (5) to polar coordinates and writing out the kernel K(u’+  U )  
explicitly we note that for parallel-plate geometry the transport equation becomes: 

( 5 5 )  
( p ~ ~ + V ( c ) - A ) h ( c , p , x , x ) = F ( ~ , ~ , x , x )  a 

where 
CO 1 2.77 

F(.  . .) = I dc’d2 I-, dp‘  lo dx’ K(c, c’, p, p’, x, x’)h(c‘, p’ ,  x’, x )  (56 )  
0 

and we have inserted the elementary solution exp(-At) and converted to the dimension- 
less speed variable c 2  = mv2/2kT. 

h ( c , p , ~ , i d ) = ; p / ~  dp’p’ Io d c ’ ~ ’ ~ e - ~ ’ * h ( c ’ , p ’ , ~ ’ , ~ d ) + ( l - ~ ) h ( c ,  -p,x,&f) 

where p is the amount of diffuse reflection, we convert equation (55) ,  for p > 0 to the 
integral form: 

Subject to the boundary condition 
2rr 2 ’  

(57) 

with an analogous expression for ,U < 0 and where V =  V-A. 
We may easily verify that h = constant is a solution of this equation corresponding to 

A = 0. However, if we insert h = c2 on the right-hand side of equation (58) we find that 
the left-hand side, for A = 0, is given by 

(2-c2)p exp[-V(&f+x)/pc] 
1 - (1 - p )  exp(- Vd/pc)  

’ h (c, p, x, x )  - c2 + (59) 
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Similarly with h = c(1 -p2)1 /2  cos x on the right-hand side, we get for the left-hand side 

Equations (59) and (60) demonstrate the absence of momentum and energy 
eigenfunctions corresponding to A = 0, i.e. equilibrium. They also show what features 
of the problem are responsible and how sensitive the degeneracy at A = O  is to the 
physical phenomena. For example, the amplitude of the ‘non-eigenfunction’ contami- 
nation is proportional to p the amount of diffuse reflection. For p = 0 i.e. a specularly 
reflecting body, we regain our momentum and energy eigenfunctions. This is not 
surprising since such a boundary condition is equivalent to an infinite medium. Thus we 
also regain the additional eigenfunctions when d + 03, i.e. the boundaries are absent. In 
general, however, the effect of degeneracy decays rapidly as we move away from the 
boundary and it is likely that, in systems which are five or more mean free paths in 
thickness, momentum and energy are ‘almost’ eigenfunctions. This conclusion is 
further substantiated if we consider the problem of a sound wave propagating along the 
axis of a cylindrical tube (Williams 1968b). Here we can also construct an integral 
equation for h(. . .) and show that momentum and energy are no longer eigenfunctions 
for zero frequency. However, the discrepancy is again a surface effect and in view of 
experimental evidence regarding the attenuation length of sound waves in the tube, it is 
clear that the energy and momentum conservation conditions continue to play an 
important role over the main portion of the gas in the interior of the tube. 
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